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Abstract 

The recreational, aesthetic, and cost benefits of sand beaches have made renourishment an 

attractive protection option in Mississippi Sound.  Thus, nearshore sediment volumes and 

projected beach life spans are important information to local and state planners.   Quantifying 

volumetric change and shoreline retreat values is an important first step; however, the unique 

aspects of fill deposition also provide an opportunity to clarify long-term sediment transport.  

Naturally, this is made easier by the use of “unique” fill sediment; or, alternately, with highly 

accurate bathymetry prior to and following renourishment.  Unfortunately, use of both fill 

sediment and bathymetry in Hancock County were limited by sediment source and time, 

respectively.  Although the fill sediments were not unique, sedimentary structures, 

composition and faint contacts helped distinguish discret sedimentary sequences.  However, 

the differences were subtle enough in some cases to raise questions about the origins of the 

sediment, be it fill or natural sedimentation.  To increase confidence in the elevation of 

Fill/Holocene contacts an ‘if then’ logic, using both profile and sediment data, was employed.  

Short-term depositional patterns determined from profiles were used to validate or reject 

individual sedimentary sequence contacts as the Fill/Holocene boundary based on a set of 

logical rules. This technique, while taking some purity out of the interpretation, helped 

increase confidence and repeatability in determining the Fill/ Holocene boundary. 

Long-term volumetric and spatial results agree well with documented renourishment 

projects and suggest that much of the renourished sediment is being moved from the subaerial 

beach to the broad nearshore platform.  The nearshore platform appears to have grown 

vertically by an average of more than 0.4 m and nearly 1,000,000 cubic yards of renourished 

sediment has been deposited here.  Use of a nearshore sediment source for the latest 

renourishment appears to have caused the onset of erosion landward of the borrow pit.  

Previously, this area was dominated by deposition.  Taken in total, however, vertical 

aggradation of the nearshore platform may act to stabilize or buffer high-erosion shoreline 

areas.   The width of the nearshore platform, an important factor in limiting wave energy 

reaching the beach, is controlled largely by the lithology and morphology of underlying 

Pleistocene units. 

 1



Introduction 

Cost and esthetic benefits of a pumped-in beach as opposed to riprap or offshore 

breakwaters has made beach renourishment in conjunction with previously constructed 

seawalls an attractive protection option in Mississippi.  Recently, with the introduction of 

legalized gaming and the associated increase in tourist visits, the beaches have also become a 

recreational asset.  As a result, an increasing number of people live and vacation on or near 

the coastline, which further emphasizes the protective role of artificial beaches.  In light of 

this perception, each of the three coastal counties has recently, within the last five years, 

completed or started renourishment projects.  Unfortunately, the paucity of sandy sediment in 

Mississippi Sound makes the search for suitable renourishment sources progressively more 

difficult.  Many of the larger projects target nearshore sources that are, themselves, part of the 

eroding system. 

Mississippi Sound and the mainland beaches are in a microtidal, low-energy, riverine-

influenced system and, correspondingly, sediments are dominantly muddy (Otvos, 1985), 

although localized sandy sediments do occur on the periphery of the basin (nearshore) and in 

areas adjacent to eroding sandy Pleistocene units (Otvos, 1976; Upshaw et al., 1966).  

Sediment volume and beach morphology changes measured by cross shore beach profiles, 

GPS (Global Positioning System) surveys and more recently using LIDAR (Light Detection 

and Ranging) elevations (Schmid, 2000c) show that, in general, most of the Mississippi 

mainland beaches are experiencing both shoreline retreat and sediment loss (Schmid, 2000a; 

2000b). 

In light of the eroding conditions, the absolute volume of sediment remaining on the 

renourished beaches and projected lifespan are especially important information to local and 

state planners.  For example, lifespan estimates can be used to appropriate funds for future 

renourishments; yearly volume reports can document rapid loss of sediment during intense 

storms, thus helping in the pursuit of disaster funding.  On renourished beaches, volumetric 

change and shoreline retreat values can adequately quantify beach erosion; however, given the 

unique nature of deposition there is also an opportunity to clarify sediment transport 

pathways, be it offshore, alongshore, or onshore.  Where nearshore sand sources are targeted 

as a resource it is even more important to determine transport pathways as changes to the 

 2



system may alter the expected outcome.  In many cases following renourishment of the 

subaerial beach a portion of sand moves offshore to re-establish a state of semi-equilibrium.  

In this process the nearshore platform may be enhanced; if so, it helps build a base for future 

renourishments, thus reducing costs and possibly increasing the capacity to buffer highly 

localized erosion trends.  If, on the other hand, the sediment bypasses the system and is lost 

offshore, the beach renourishment process will become increasingly more expensive.  

Determining the degree to which both processes are occurring is made easier if either profiles 

or detailed bathymetry are performed regularly over the history of renourishment.  In this way 

cross shore profiles can provide information about geomorphic changes and document the 

absolute volume of renourished sediment remaining on the beach.  The obvious problem is the 

difficulty in gathering or locating continuous, long-term, systematic data beginning with the 

earliest renourishment.  To overcome this common problem we explored the use of sediment 

core transects along a renourished beach as an alternate solution.  

In light of the advantages of understanding sediment transport on renourished beaches, 

the goals of this paper are to reconstruct the ‘natural’ Holocene surface offshore of a 

continuously renourished beach, track the fate of renourished sediments, and contour and 

describe the Pleistocene framework.  In so doing, the results may 1) better quantify the coastal 

sediment budget, 2) document potential nearshore sediment sources, 3) describe 

sedimentation adjacent to a nearshore borrow site, and 4) define a relationship, if present, 

between Holocene sediments and erosion rates to the underlying Pleistocene framework. 

Previous Works 

The introduction of renourished sands can be seen as a sort of tracer experiment 

(Thieler et al., 1994; Thieler et al., 1999) if either the composition varies from the natural 

sediment or there is enough sediment to reverse local trends, e.g., truncation of a muddy or 

upward fining sequence with a sandy sequence.  This idea has been used along the US 

Atlantic Coast by Pearson and Riggs (1981), Thieler et al. (1994; 1998; 1999), and Reed and 

Wells (2000) in North Carolina and by Pabich (1995) in Massachusetts.  In these studies 

textural and grain characteristic techniques were used to map and describe nearshore shelf 

sands following renourishments.  The North Carolina studies found that the character of thin 

sand bodies overlying Holocene mud and Tertiary and Pleistocene units was traceable to the 
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lagoonal sediments used in the renourishments.  From these data they were able to define the 

transport paths of both coarse and fine fractions of the introduced sediment. 

These works using renourished sediments as tracers were ultimately aimed towards 

resolving local sediment budgets and providing insight on the relative success or failure of 

particular projects.  The North Carolina studies also showed that the sediment transport 

patterns had definite links to antecedent nearshore geology.  This then creates an obvious 

problem for traditional models based on beach profiles and wave parameters.  Saddled with 

such a problem when a disparity between longshore drift calculations on Eastern Long Island 

arose, Schwab et al. (1999a; 1999b) used high-resolution seafloor mapping to describe the 

interplay of geologic framework and physiography to erosion rates.  

Understanding the importance of the geologic framework in coastal change has 

prompted several studies on the nearshore geologic framework of the Mississippi Sound and 

Northern Gulf of Mexico.  Otvos (1985; 1976) described and named Pleistocene units along 

with their potential for use in renourishment in Mississippi, Alabama and western Florida.  

Hummel (1995) documented the Pleistocene/Holocene framework in eastern Mississippi 

Sound and quantified local sediment sources for renourishment offshore of Morgan Peninsula, 

Alabama following Hurricane Georges (Hummel, 1999).  Significant work has been and 

continues to be done to the southwest of the study site in Louisiana; see for example 

(Kindinger et al., 1989a; Kindinger et al., 1991; Kindinger et al., 1989b). 

Any study using renourished sediment as a tracer is aided by in-depth renourishment 

histories; however, determining specifics on early projects is hampered by variable record 

keeping practices and highly variable sources (Dixon and Pilkey, 1991; Trembanis and 

Pilkey, 1998).  Some of the parameters necessary for reconstruction of a historical database at 

the Hancock County study site were documented by a county task force (Sand Beach 

Planning Team, 1986), who also noted that offshore transport might be the most significant 

component of erosion in the area.  

Study Site 

The Hancock Beach System is in southwestern Mississippi; it is the second largest 

renourished beach in the state and encompasses two towns, Bay St. Louis and Waveland 
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(Figure 1).  Hancock County has a southwest – northeast trending shoreline that stretches 

from the town of Bay St. Louis in the northeast to the Pearl River, which forms the boundary 

between Mississippi and Louisiana, in the southwest.  The southwestern two thirds of the 

shoreline are dominated by natural marsh, with a few small pockets of sandy beach that are 

fed by remnant and locally eroding Holocene dune/beach ridges (Otvos, 1985) stranded 

within the marsh.  A seawall, which is fronted along its northern two-thirds by an artificial 

beach, armors the northeastern third of the county’s shoreline.  

 

 
Figure 1.  Map of general study area within the Northeast Gulf of Mexico. 

Once the seawall was constructed in 1928 (Meyer-Arendt, 1991) a line in the sand was 

effectively drawn; sediment supply from eroding headlands was cut off and an immovable 

yardstick, to which erosion could be easily measured, had been constructed.  The general lack 

of a sediment source, rising sea level, and construction of a seawall created a situation prone 

to erosion.  The seawall, originally built to protect upland infrastructure and the adjacent 

coastal road, has been an effective backbone in the coastal defense scheme during severe 

storms (Sullivan et al., 1985).  However, its continuing effectiveness is dependent on a 

constant replenishment of sand to help buffer the impact of moderate to large storms through 
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time.  At present, along the Hancock County Beach, the seawall crest is at or near beach level 

on the northern 8000 m portion where renourishment has recently been undertaken.  Along 

the southern 4000 m, where there are only small pockets of beach trapped by groins, the 

seawall rises 1 to 1.5 meters above the mean water level.  Along this stretch, even short 

duration sea breeze conditions create splash over onto the adjoining road.  In general, the 

elevation of the developed upland adjacent to the shoreline is only slightly above the level of 

the seawall crest.  

The entire Mississippi mainland lies behind a discontinuous string of barrier islands 

situated 12-18 km offshore that, along with the mainland coast, form the boundaries of the 

Mississippi Sound (Figure 1).  Mississippi Sound is a shallow (average 3 m depth), long (131 

km), and narrow (average of 15 km) east – west trending body of water (Higgins and 

Eleuterius, 1978).  Winds typically blow from the north in the winter months and from the 

southeast to southwest the remaining portion of the year (Eleuterius, 1998).  The strongest 

winds come from hurricanes that have historically affected the coast, either as a direct hit or in 

close proximity, about three times per decade and from winter cold fronts (Lana, 1998).  The 

high return rate of hurricanes is among the reasons for the initial construction of seawalls in 

Mississippi.  Tides in Mississippi Sound are microtidal and diurnal with a range of 0.5 meters 

(US Department of Commerce et al., 1977).  As the Sound is relatively shallow and has a 

surface area of over 2 billion square meters, wind tides can have a more pronounced effect 

than the gravitational tides.  Given the shallow slopes of the Mississippi beaches this can 

either expose several hundred meters of normally submerged nearshore or cause water to 

encroach on the seawall.  Despite a relatively low-energy regime in Hancock County, the 

nearshore exhibits a well-developed and extensive nearshore bar pattern that shows little 

chronological change (Oivanki, 1994b) and may be associated with standing waves 

(Nummedal et al., 1980). 

The Holocene history of the western portion of Mississippi Sound is directly 

influenced by the formation and abandonment of the Saint Bernard lobe of the Mississippi 

River Delta (Otvos, 1985).  The prograding Saint Bernard created a large subaerial subdelta 

that almost completely shielded the shoreline from the Gulf of Mexico, although deltaic 

sediments did not bury the shoreline itself.  Subsequent abandonment and erosion of the Saint 

Bernard delta about 1200 years ago (Frazier, 1967) returned the shoreline to its present 
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conditions.  Nearshore Holocene sediments are underlain by Pleistocene units, including the 

Prairie, Biloxi, and Gulfport formations that represent alluvial/fluvial, brackish/marine, and 

nearshore/beach deposits, respectively (Otvos, 1985). 

The 10 km renourished Hancock County Beach system is significantly smaller than 

the 40 km long artificial Harrison County Beach system to the east.  The combined Hancock 

Beach System is at present about 8000 meters long and has undergone several renourishments 

(Dixon and Pilkey, 1991; Sand Beach Planning Team, 1986; Trembanis and Pilkey, 1998) 

since the construction of the seawall in 1928.  The most recent county project was completed 

in 1994 (Oivanki, 1997); a smaller project was completed in 1996 on the beach fronting the 

downtown section of Bay St. Louis to the north of the study area. The two most 

volumetrically important renourishments in the study area were in 1967 and 1994; the 1967 

renourishment created a 45 to 60 m (150-200 ft) wide beach from the bare seawall, the 1994 

renourishment a 60 to 68 m (200-225 ft) wide beach.    

 
Picture 1.  View towards shore from vessel anchored over borrow pit; piling is several meters shoreward 
of the actual borrow pit.  

Sand for the latest renourishment (1994) came from an offshore borrow site less than 

700 m from shore (Picture 1, Figure 2); sand for the 1967 renourishment was also pumped in.  

Offshore Holocene sediments in the area are not typically suitable as a source for 
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renourishment; they are dominantly muddy fine sands to sandy mud (Otvos, 1985).  However, 

a broad, shallow (<1.5 m deep) nearshore sand platform extends from the shoreline up to 700 

m offshore; it has been and continues to be used as a sediment source.  

Methods 

To define fill volumes, interpret the Holocene sediments and describe the underlying 

Pleistocene units, a series of vibracores and hand augers was taken on regularly surveyed 

(Oivanki, 1997) cross shore profiles (Figures 2 and 3).  Each profile was surveyed using a 

total station, and every other cored (see Figures 2 and 3); each core location was also 

surveyed-in to establish accurate elevations.  Hand augers were used to core the subaerial 

beach at two or more locations along the profile; samples were recovered at every half a foot 

(0.15 m).  Hand auguring in unconsolidated and saturated soils was accomplished by inserting 

a section of aluminum pipe into the borehole to act as a well casing.  Total auger depths 

ranged from 2 to 4 meters.  Hand auger data were recorded in the field and sampled for later 

analysis.  Vibracores were taken at elevations of between -0.75 and -1.25 m, corresponding to 

locations about 250 to 450 m seaward of the shoreline (Figure 3).  Vibracores ranged from 1.8 

to 4.3 m in length. Vibracores were capped in the field and then later sectioned, described, 

and sampled in the lab.   
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Figure 2.  Profile locations along Hancock County Beach. 

Several representative sample splits were taken from the Holocene section.  

Granulometric analysis of the samples was performed using methodology outlined by Folk 

(1968).  Sediments with noticeable amounts of mud were washed using a 4 Phi sieve; the mud 

component was captured and pipetted to determine its weight percent.  Median grain size and 

sorting coefficients were determined by the method of moments.  Based on settling 

characteristics of the mud, the pan/mud fraction was assigned a medium silt value.  

Composition of units was also visually estimated in samples and whole cores. 
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Figure 3.  Auger and vibracore sample locations at the study site; sample locations represent control 
points for subsurface interpretations. 

Previously established profiles (Figure 2) had been surveyed annually to semi-

annually since 1991; they extended from the seawall to an elevation of about -1.25 meters, 

where, typically, the depth increases rapidly and sediments turn muddy.  The shallow nature 

of the nearshore platform and low-energy setting significantly aid in profiling.  The present 

mean high tide shoreline position has been surveyed annually using kinematic Global 

Positioning System (GPS) technique since 1993 by Oivanki (1997) on the shoreline position 

and further analyzed by Schmid (2000a).  

Surveyed profiles from 1993, 1994, and 1999 were entered into a spreadsheet, 

converted to a Transverse Mercator based coordinate system and loaded into AUTOCAD 

MAP (AutoDesk, 1998).  GPS data were post processed and imported into a Geographic 

Information System (GIS) along with vibracore, auger, and profile locations and elevations.  

Elevations of different units based on profile, core and sample analysis were determined and 

later exported to AUTOCAD MAP. 
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Once location and elevation data were determined, surfaces were produced using 

QUICKSURF (Schreiber Instruments, 1998).  A Triangulated-Grid technique and a 15 x 15 

grid were used to produce surfaces using profile, vibracore and auger data.  Several methods 

of gridding were tried before settling on a grid with no surface curvature that had the least 

overshoots between distantly spaced points, but also showed the least precision with closely 

spaced points.  Higher order surfaces produced highly detailed surfaces where points were 

closely spaced but where spacing between points or profiles became large (>200 m) the 

surfaces became highly suspect without “ghost points” added by the author.  Because the data 

were not originally set up for use as a DTM (Digital Terrain Model), it was decided to use the 

lowest power grid method (Hicks and Hume, 1997). 

Data and Interpretations 

Profiles 

Beach profiles were used to quantify the 1994 renourishment and document the 

volume of sediment flux and general sediment deposition/erosion trends following 

renourishment.  Comparison of pre-renourishment and 1994 beach elevations interpolated 

from profiles shows a net addition of roughly 800,000 cubic yards (c.yds.) (Table 1) of 

sediment across the entire study area.  The value is broken down by town to compare with the 

literature; Trembanis and Pilkey (1998) reported that 600,000 c.yds were used in the 

Waveland portion of the renourishment.  The computed Waveland volume is within about 5% 

of the reported value.  

Table 1.  Profile volumes in cubic yards; 1994 volumes for total renourishment, 1994 to 1999 volumes of 
change during period. 

 Waveland Bay St. Louis Total 
1994 Renourishment 560,000 250,000 810,000 

 Onshore Nearshore Net Change 
1994 to 1999 volume 
change (entire beach) -76,000 156,000 80,000 

 

The total sediment volume change from 1994 to 1999 was computed using surfaces 

generated by profiles surveyed in 1994 and 1999 (Table 1).  It is clear that there is an offshore 

loss component; however, there is roughly an additional 80,000 c.yds. of sediment on the 

 11



nearshore that cannot be accounted for.  Although some natural longshore transport may have 

occurred from sources to the southwest and/or northeast, it is unlikely that this would reach 

80,000 c.yds.   Therefore, this value is taken to represent the error in computing surfaces with 

profiles and roughly equates to a 2.5 cm (1 inch) elevation error over the entire study area.  

The error notwithstanding, the relationship between onshore loss and offshore gain is an 

important finding as it strongly suggests that much, if not all, of the earlier renourished 

sediment (fill) resides on the broad nearshore platform.  

Sediment Data 

Sediment data were used to map the Pleistocene lithology, Holocene thickness and 

lithology, and fill thickness along the study site.  Two approaches were taken to establish the 

elevation of fill–Holocene contact along the beach.  Samples taken on the subaerial (dry) 

beach with hand augers were analyzed to look at a change from subaqueous deposition to 

subaerial deposition; the nearshore (below sea-level) samples taken with vibracores were 

analyzed to determine changes in sedimentation rates.  The two approaches to determine 

whether the sediments were fill or natural are treated in separate sections.  Geologic units 

from each approach are denoted differently; onshore (hand augers) units are given numeric 

prefixes (1, 2, 3) and nearshore units (vibracores) are given alphabetical prefixes (A, B, C).  

The units are further defined as Facies F (fill) for units associated with fill deposition or 

Facies H (Holocene) if they were deposited before the fill events or are associated with 

natural sedimentation.  

Subaerial Beach Samples  

In augers taken on the subaerial beach, eight basic lithologies were described on the 

basis of texture, color, and macroscopic composition; no sedimentary structures were 

preserved in the coring process.  The eight lithologies were further refined to four major units.   

Unit 1 consists of two lithologies: yellow medium sand (1A) and light gray, medium 

to fine sand (1B).  Units 1A and 1B had very similar median and sorting values with less than 

0.5% finer than 63 µm (Table 2).  They were nearly devoid of shell material larger than 2 

mm, contained small pockets of black-stained organics, and composed dominantly of quartz 

sand.  Organics were more abundant in 1B than 1A.  The contact between 1A and 1B 

 12



normally corresponded to the elevation of the water table except when sampling after heavy 

rains.  Better preservation of organic material and gray color in 1B is attributed to less 

oxidation below the water table.  Total thicknesses of 1A and 1B together ranged from 1 to 2 

m and typically decreased in thickness towards the shoreline.  Based on sediment 

descriptions, stratigraphic position and elevation, these two backshore to foreshore units are 

interpreted as fill (Facies F) used in renourishment. 

Table 2.  Subaerial beach auger sediment data – Holocene units. 
Unit n Mean (phi) Sorting 

(std dev) 
Mud% 

1A 3 2.01 0.58 0.08 
1B 3 2.11 0.60 0.30 
2 4 2.48 1.05 5.76 
3 3 3.20 1.79 21.36 
 

Unit 2, a light greenish-gray, slightly organic, silty medium to fine sand differed in 

color and texture from the above units; its darker gray to greenish color is indicative of an 

increase in mud-sized sediment (Table 2).  Organic and shell fragments were more abundant 

than in Unit 1.  Shells were abraded and highly weathered; the organic particles were black 

stained and dominantly carbonized wood and bark fragments.  Gravel sized clasts, mostly 

weathered and well rounded stream gravels, are present in trace concentrations.  As a 

consequence of the sampling technique, the bedding characteristics of the gravels could not be 

determined.  Man-made artifacts were also found in this unit.  At several locations the contact 

between Unit 2 and Unit 1 corresponded to organic rich layers that were less than 0.15 m (one 

sample interval) and consisted mainly of small carbonized wood fragments.  The thickness of 

Unit 2 varies from 0.5 to 1.5 m; it is interpreted as the natural inshore beach sediment and/or 

subaqueously reworked fill sediment from the earliest renourishments.  The high energy, low 

preservation potential of this facies combined with the sampling method makes distinction 

between natural and fill sediment (Facies F) difficult to impossible.  However, for the 

practical purpose of this report Unit 2 is, based on texture, color, and composition, defined as 

the natural Holocene inshore to foreshore facies (Facies H) and, thus, marks the elevation of 

the natural beach surface. 
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Unit 2 typically overlies Unit 3.  Unit 3 is a dark gray to brownish green, silty to 

muddy fine sand (Table 2) that commonly contained more organic detritus and semi-intact 

shell fragments.  The coring process was significantly easier once reaching Unit 3 as the 

increased mud content and poorer sorting reduced the amount of porewater flow into the 

borehole.  The thickness of Unit 3 varied considerably from 0 to 1.3 m and typically increased 

basinward (seaward).  No distinct upward or downward fining trends were noticed.    Unit 3 is 

also defined as the Holocene inshore to foreshore facies (Facies H).  During the period of 

deposition, which is interpreted as middle to late Holocene based on stratigraphic position and 

elevation, there may have been pulses of higher mud content entering the system from the 

adjacent Saint Bernard Delta (Otvos, 1985).  Therefore, in this case, a fining upward 

sequence, which would normally be expected from a rise in sea level, is absent.  The limited 

thickness of Unit 3, even as significant sediment was entering the basin, is partly a result of 

the basin edge location.  

The lower contact of Unit 3 is associated with a distinct change in lithology that 

defines Unit 4; the contact is abrupt with some oxidation in the upper sandy clay samples, and 

is tentatively described as an unconformity surface.  Unit 4 consists of two subtypes, a tight, 

light gray-yellow to blue-green to occasionally red sandy clay (4A) and a white to humate-

stained silty sand (4B).  Both of these subtypes have been previously recognized and 

described as Pleistocene in age by Otvos (1985).  Specifically, the clay unit is interpreted to 

be part of the Prairie Formation, which is an alluvial/fluvial unit deposited during the previous 

highstand (Otvos, 1985; Otvos, 1976).  The humate-stained silty sand is interpreted as the 

Gulfport Formation, which is described as relict barrier or shoreline beach ridges that were 

deposited nearly contemporaneously with the Prairie Formation.  Unit 4 elevations, therefore, 

mark the basement of Holocene deposition. 

Nearshore Units 

The nearshore sediments were sampled with vibracores, enabling the use of 

depositional structures along with texture, color, and composition for interpretation of 

depositional environment.  Using these characteristics, three major units were differentiated.  

From shallowest to deepest they are: 1) Unit A, tan medium sand to greenish-gray fine sandy 
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mud; 2) Unit B, brown to black sandy organic mud; and 3) Unit C1, tight reddish gray to 

bluish gray sandy clay or Unit C2, humate-stained slightly silty sand.    

Units C1 and C2 are directly correlated to Units 4A and 4B in the onshore samples.  

The contacts between Units C and A (no cores penetrated both B and C units) are typified by 

a disconformity with numerous rip-up clasts, oxidation of clay minerals in the upper 0.25 m, 

dark humate stained organics and extensive bioturbation.  These characteristics of unit C(1 

and 2) are consistent with the Pleistocene age adopted by Otvos (1985) and will, along with 

Units 4A and 4B, be referenced as the Prairie (clayey unit – C1) and the Gulfport (sand unit – 

C2) formations.   

Unit B consists of dark brown to black sandy organic mud with abundant wood 

fragments and only occurred in the bottom of two cores.  In one core the top contact was 

marked with a layer of gravel.  This unit was exceedingly tight and only small portions were 

cored before refusal.  The elevation of Unit B’s upper contact was between –2.5 and –3.0 m, 

which is deeper than the two adjacent cores that hit the Prairie Formation.  The texture, 

stratigraphic position and organic content indicate that this unit represents a 

Pleistocene/Holocene marsh or drainage channel, which occupied a small erosional 

depression.  Because this unit has a limited areal extent and is lower than the surrounding 

Pleistocene, its bottom depth (depth of refusal) is used to approximate the Pleistocene 

elevation at the two locations it was sampled.            

Unit A consists of several lithologies, from tan well sorted sands to gray-green poorly 

sorted sandy mud, that occur from the sediment-water interface to the Pleistocene and 

represents the bulk of the cored sediments.  Cores easily penetrated Unit A, which in some 

cases was thicker than 4 m.  The unit is typified by medium to fine quartz sand.  Organic 

staining in the upper portion is common; bioturbation is found throughout, although at 

different densities and with different burrow geometry.  Whole and abraded shell and small 

wood fragments occur in trace quantities.  Mud contents generally range from 1 to 15 % 

(Table 3) with locally higher concentrations.  There is an overall coarsening upward trend; 

however, within individual lithologic sequences both fining and coarsening upwards 

sequences are present but relatively subtle.  Based on the nature of the sediments, 

stratigraphic position, and elevations the lower portion of Unit A is interpreted to represent 
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natural Holocene sedimentation and correlates with Units 2 and 3 (Facies H) in the auger 

samples.  In many cores, however, the upper portion, based on profile data, correlates to Unit 

1 (Facies F).  The distinction in Unit A between Facies F and H is critically important to the 

end result and as such will be discussed in greater detail.  

Table 3.  Nearshore vibracore sediment data – Holocene units.  
Unit n Mean (phi) Sorting 

(std. dev) 
Mud% 

A1 4 2.88 0.90 10.79 
A1(TYP)* 3 2.60 0.65 1.66 

A2 3 2.72 0.96 5.76 
A3 3 3.11 1.25 14.37 

* excluding 1 sample of fine grained A1 sediment 

Facies F or H? 

In the preceding section, correlation of the onshore and nearshore Pleistocene surface 

provided the bottom elevation of the Holocene envelope.  Similarly, the onshore Unit 1 was 

interpreted to be Facies F based on sedimentation and elevation (profile data) and, thus, 

defines the upper elevation of the onshore Holocene envelope.  This leaves one important but 

as yet unanswered elevation: the upper elevation of the nearshore Holocene envelope.  The 

result is crucial in answering the question, ‘how much of the fill sediment is staying within the 

system and how much is lost’.  The answer requires differentiating between fill deposits 

(Facies F) and naturally deposited sediments (Facies H) in the nearshore.  Unfortunately, 

unlike earlier studies (Pearson and Riggs, 1981; Thieler et al., 1994) that used a sharp contact 

formed by the dissimilar character of Tertiary to Late Holocene units and overlying gray 

colored fine sands dredged from the adjacent estuary to determine fill thickness, the similarity 

of the fill sands, largely derived from the nearshore Holocene layer, limits the contrast of the 

Fill/Holocene contact.  In short, there is no distinct erosional surface in this setting from 

which deposition can be measured nor is there a tracer “type” of sediment that characterizes 

the renourished sediment along the beach.  Therefore, a hierarchal approach is used with the 

available data sources.     

The primary data source is interpretations from vibracores.  Within Unit A there are 

several sub-units that are distinguished by stratigraphic position, changes in texture or textural 

sequences, sedimentary and burrow structures, and location on the broad nearshore platform.  
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These individual units will be further separated into potential fill units (Facies F) and 

naturally deposited sediments (Facies H).  Differences in depositional patterns (wave energy) 

within the study area and locations of cores with respect to the nearshore boundary (water 

depth, seaward location) limit the use of single sediment parameters, such as grain size, 

sorting, composition or mud content, to qualify a sediment as natural or fill.  Instead, changes 

in sediment parameters mark horizons that compartmentalize the Holocene layer.   

Along with core descriptions and grain size analysis, profile data, which encompasses 

the fate of the most recent (1994) renourishment sediments, is used to describe the spatial 

character of sedimentation along the beach, whether dominated by erosion, transport (minor 

erosion or deposition) or deposition.  The accuracy of these data is documented by volumetric 

calculations shown in the previous profiles section (page 11).    

Unit A Sub-units 

Upper sections of vibracores contain one to two sequences that are subtly 

distinguished from the bulk of the underlying sediments by changes in burrow concentrations 

and textural trends.  Unit A1, the uppermost portion of Unit A, showed a broad range of 

sediment character, as would be expected on a fairly low energy shoreface.  It generally 

consists of tan-gray sand (Table 3; A1(typ)) that is lightly bioturbated to chaotically bedded 

(Picture 2).  There was, however, a noticeable difference in three deeper cores (> 1m water 

depth) near Ladner Pier.  Dark gray-green muddy fine sands with significant organic staining 

typify unit A1 in these cores.  Shells, weathered or whole, are noticeably absent in Unit A1.  

Burrows where present, commonly have a round, horizontal geometry and are filled with dark 

organic silts.  Unit A1 ranges in thickness from 0.25 to 1.0 m, with the thickest deposits on 

the northeast and southwest ends of the study area, where cores were taken on the crest of 

megaripples, and the lowest thickness in the middle of study area.  No characteristic fining 

upward or downward sequences define A1; the northeast and southwest cores show no trends, 

the middle cores fine upward.  This unit may reflect high sedimentation rates initially 

following renourishment; or localized short-term mixing such that conditions are not averaged 

over any significant length of time and, thus, show different textural trends across the study 

area. 
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Picture 2.   Unit A1 in the core barrel; note the horizontal trace fossils.  

Unit A2, where present, underlies unit A1 and is a more homogenous sediment unit.  It 

generally consists of light greenish-gray muddy sand (Table 3).  Shells and organics are 

slightly more abundant and trace fossils are filled with both organic silts and clean sands 

(Picture 3).  Unlike Unit A1 there is no major spatial difference along the beach.  Sedimentary 

characteristics of this unit suggest that deposition is averaged over a longer period, but it is 

neither clearly a fill unit nor a natural sediment unit.  The contact between A1 and A2 is 

gradational.  It is mainly associated with a slight change in bedding or burrow characteristics 

and typically a slight increase in mud sized sediment (Table 3).  Unit A2 is more heavily 

bioturbated than A1 and burrows were typically larger in size (up to 4 cm wide).  Unit A2 is 

from 0 to 1 m thick. 

Unit A3 extends from the Holocene/Pleistocene surface to the contact with either Unit 

A2 or A1.  It is the thickest of the A units and has been interpreted to be part of Facies H.  The 

unit differs in that it is generally finer grained (Table 3), poorly sorted, and contains higher 

concentrations of whole and partial shells.  Trace fossils are mainly filled with clean sands 

(Picture 4).  The lowest portions of the unit contain rip-up clasts from the underlying 

Pleistocene.  Like the previous units its upper contact with either Unit A1 or A2 is subtle and 

typically gradational. 
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Picture 3.  Unit A-2 in core barrel; note the increase in mud (dark) content and higher level of 
bioturbation than in Unit A-1. 

 
Picture 4.  Unit A-3 in core barrel; note the large vertical trace fossil filled with clean sand. 

Profile Data 

Profile data from 1994 and 1999 were used to describe the volumetric change of the 

1994 fill sediment.  Renourished sediments were initially placed on the backshore to 

foreshore portion of the beach and left to adjust themselves into a semi-equilibrium profile; 

subsequent maintenance operations such as bulldozing probably hastened the deflation of the 

beach profile.  Annual profile data indicate that after two to three years the profile changes 

became subtle, having achieved a state of semi-equilibrium.  Therefore, it is tentatively 

assumed that a five-year period is long enough to highlight the basic sediment transport 

patterns on the beach. 

Profile differences from 1994 to 1999 were mapped and compared to highlight 

sediment deposition trends.  Areas that had a clear positive elevation change were defined as 
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depositional, areas with marginal elevation changes were defined as transport, and areas that 

had a negative elevation change were defined as erosional (see Figure 5).  

Combined Data 

To mate vibracore and profile data an “if then” logic is used.  By using core and 

profile data together in this fashion, Holocene compartment elevations are accepted or 

rejected based on sedimentation patterns at each core location.  The use of two data sources is 

necessary because of the difficulty in determining with certainty the difference between fill 

and natural units.  The technique helps provide consistent elevations of the Fill/Holocene 

surface based on a set of depositional rules.  The logic follows that areas: 1) associated with 

deposition have high accommodation space (lower Holocene elevation), 2) associated with 

transport have less accommodation space and higher energy, and 3) associated with erosion 

have a higher Holocene (Facies F) elevation (low accommodation space).  These basic rules 

are incorporated into an “if then” logic to help reduce obvious errors.  Obvious errors are 

those that would assign areas with notable profile accretion to low fill thicknesses, or are 

areas typified by erosion assigned high fill thicknesses.  In all, this process is used to increase 

repeatability in the contact elevation between Facies F and H, yet it does so at the expense of 

strictly defining natural vs. artificial sediment character.  

The rule-based “if then” interpretation of the Facies F-H contact combines two 

variables, Unit A sub-units (A1, A2, and A3) and profile change between 1994 and 1999 to 

produce a cross section with the onshore units (Figure 4).  If the location of the nearshore core 

was within a depositional area then the Facies F-H contact was defined at the Unit A3 contact 

such that both Unit A1 and A2 are defined as fill.  If the core is an erosional area then the 

Facies F-H contact is defined at the contact between Unit A2 and A1.  In several erosional 

areas Unit A1 and A2 were nearly indistinguishable and thus both treated as natural sediment 

such that the Facies F-H contact lies at the sediment-water interface.  Finally, if the location 

of the core was within a transport area then the Facies F-H contact was set at the Unit A2 

contact, or if the A1 and A2 units were indistinguishable then at the A3 contact. 
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Figure 2.  “If Then” logic diagram detailing facies determinations and resulting subsurface 
interpretations; A) “if then” cross section possibilities if the nearshore A1 and A2 units could be 
differentiated; B) cross section possibilities if units A1 and A2 were undifferentiable.   
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Results 

1994 Renourishment 

Elevation (profile) data used to track the recently added sediments offer a strictly 

measured summary of the general sediment flux occurring on the Hancock County beach.  

Comparison of interpolated bathymetry from profile data taken in 1994 and 1999, which 

encompasses the life of the present renourished beach (Table 1), suggests that it is nearly a 

closed system.  Sediment losses would include longshore transport beyond the end of the 

renourished beach, sand blown inland, and sediment transported offshore beyond the 

nearshore platform.  Likewise sediment sources would include longshore drift and mud 

deposition settling out from the water column.   

In general the entire nearshore was elevated from 1994 to 1999, while the onshore 

portion was deflated (Figure 5).  Therefore, build-up of the nearshore platform is, to a large 

degree, occurring; however, the pattern also indicates that the extreme northeastern and 

southwestern portions are not receiving significant sediment input from the renourished 

foreshore.  These areas may be dominated by longshore drift as opposed to offshore sediment 

migration.  Given that the trend is toward nearshore enhancement, the nearshore area could 

potentially grow vertically by 0.3 m (12 inches) if the entire 1994 package of renourished 

sediment were transported seaward.  More importantly, the trends indicate that sediment from 

earlier renourishments should, to a large degree, also remain on the nearshore platform and 

comprise a significant thickness.  

 
Figure 5.  Sedimentation patterns from 1994 to 1999 based on changes in profile elevation. 
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Facies F and H 

Elevations of the Facies F – H contact were determined from core data and 

depositional characteristics of the nearshore platform, as discussed previously.  These 

elevations represent the natural Holocene surface.  Facies F – H contact evaluations were 

subtracted from the measured 1999 bathymetry to arrive at Facies F thicknesses and volumes 

(Table 4).  The thickest areas were on the dry beach, where much of the recent renourishment 

remains (Figure 6).  On the nearshore platform, the area southwest of the borrow area has the 

thickest deposit; the area to the south of the Ladner pier had the thinnest Facies F deposits.  

These thin deposits correspond to the area where muddy surface sediments dominate and the 

nearshore platform is fairly narrow.  It should be noted that as a result of core locations the fill 

thickness map area (Figure 6) is slightly less than the actual nearshore area; however, the 

thickness of Facies F at the extreme southern end appears to be marginal and should not 

significantly change the volume calculations. 

Table 4.  Sediment volumes for the study area. 
 Onshore Nearshore Total 

1994 to 1999 change -76,000 156,000 80,000 
Total Fill (1945-1999) 700,000 980,000 1,680,000 

Total Holocene* 640,000 3,250,000 3,890,000 
*Actual volume higher on the nearshore than reported because of 

incomplete calculation area  (see Figure 7) 
 

Calculated volumes serve two purposes; first, and most importantly, they help check 

the validity of the Facies F and H contact; and second, they summarize the basic nature of the 

beach.  The total onshore volume of about 700,000 c. yds. (Table 4) agrees fairly well with 

the addition of roughly 800,000 c.yds. in 1994 and implies that little sediment remains from 

the previous renourishments in 1941, 1967, and 1972 (Sand Beach Planning Team, 1986).  

This volumetric consistency also suggests that the onshore contact elevations between Facies 

F and H are correct.   
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Figure 6.  Fill thickness across the study area based on the Facies F-H contacts. 

Assuming the two largest renourishments (1967, 1994) contained similar amounts of 

sediment, based on similar beach widths (Sand Beach Planning Team, 1986), over the study 

area then there would be the potential for a total of roughly 1,600,000 (800,000 x 2) c. yds. of 

renourished sediment.  Some of which would have been lost, but it is possible that a certain 

amount of additional muddy sediment was deposited over the 33-year period.  The computed 

total volume of the fill layer (Table 4) comes very close, about 5% difference, to the 

theoretical value.  The fill volume on the nearshore platform represents an average thickness 

of 0.44 m (17 inches).  The overall volumetric accuracy adds validity to the Facies F – H 

contact elevations and to the depositional patterns that they suggest. 

As nearshore sources have been used in the past to renourish beaches, it is reasonable 

to look at the total amount of Holocene/Fill sediment that is resident on the nearshore 

platform.  The contact between Facies H and the Pleistocene marks the lower boundary; the 

sediment-water interface marks the upper boundary.  Unlike the contact between Facies F and 

H, the Pleistocene is easily distinguished from the overlying Holocene.  The interpolated area 

is smaller than previous areas because several of the cores did not reach the Pleistocene.  In 

the partial interpolated nearshore the combined Holocene/Fill volume is 4.2 million cubic 

yards.  Holocene thickness is highest in the areas offshore of the two slight headlands (Figure 

7).       
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Figure 7.  Holocene thickness; northeast portion is limited because several cores failed to reach the 
Pleistocene surface. 

Discussion 

Previous research has shown that sediments used for renourishment can themselves be 

used to document sediment patterns (Pearson and Riggs, 1981; Thieler et al., 1994).  They 

are, in effect, used as a semi-controlled tracer experiment.  This type of experiment is aided 

by the use of “unique” fill sediment; or, alternately, with highly accurate bathymetry prior to 

and following renourishment.  Use of both the fill sediment and bathymetry in Hancock 

County were limited, either by time in the case of the bathymetry or by geology in the case of 

fill type.  These practical aspects make using the renourishment event as a tracer experiment 

more difficult. 

In the Hancock County beach example, the most recent renourishment was preceded 

and followed by accurate profile data out to the edge of the nearshore platform; however, the 

older renourishments lack sufficient baseline survey data for use as a tracer experiment.  In 

addition, the sediments used as fill are themselves part of the nearshore Holocene 

compartment.  No unequivocal textural and compositional differences exist between known 

fill in the uppermost layer and the bulk of the Holocene layer.  However, trace fossils, the 

sediments filling them, small changes in shell content and faint contacts helped distinguish 

small sedimentary sequences.  The existence of large bedforms would also seem to play a role 

in determining sedimentary sequences.  However, the apparent stability of the features over 

tens of years (Oivanki, 1994b) suggests that bedform movement was slow enough to facilitate 

destruction of crossbeds by bioturbation.  To increase confidence in the elevation of Fill – 

Holocene contacts an ‘if then’ logic using both profile and sediment data was used.  This 
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technique, while taking some of the purity out of the interpretation, helped increase the 

confidence of picking the Fill – Holocene boundary based on sediment deposition patterns 

and sedimentary sequences.  With all of the facies elevations now defined it is possible to 

examine the Holocene evolution of the nearshore and document sedimentation patterns in 

response to renourishment, underlying units, and sand dredging.  

Renourished Sediments (Facies F) 

Recognizing renourished sediments was made difficult by the use of nearshore 

sediments as a source; however, the low energy, depositional nature of the study area 

facilitates the successful use of profile measurements out to the nearshore/offshore boundary.  

Core data helped extend the sediment history back to the earliest renourishment (ca. 1940’s).  

This provides an insight into the overall sediment depositional patterns occurring on the 

Hancock County shoreline. Based on the findings, there are three principal nearshore areas 

with higher depositional trends (Figure 6); two are associated with slight shoreline headlands 

(A and B) and the third is in an embayment with large groins (C).  

It is not surprising that one of the thickest fill areas (label A: Figure 6) is adjacent to 

the dredge pit used in the latest renourishment because this area also has a thick Holocene 

sequence (Figure 7) and, thus, a continuous history of deposition.  Note, however, that 

following excavation of the dredge pit for sand, the sedimentation patterns adjacent to the pit 

appear to have switched to transport or even erosion (Figure 5).  The second headland area 

(B) is also associated with a fairly thick Holocene deposit (Figure 7), but low fill thickness 

(Figure 6) and recent transport (Figure 5).  These differences suggest that the northeastern 

headland (A) has a higher offshore component than the southwestern headland (B), such that 

fill sediments are moved offshore from the subaerial beach in the area adjacent to the borrow 

pit (A) and in doing so may be gradually filling in the pit.  The embayment depositional area 

(C) is in the only segment in the study area with large shore-normal structures.  These groins 

are efficient in trapping longshore movement; however, adjacent areas exhibit low fill 

thicknesses.   Areas associated with little or no renourishment sediment are typified by thin 

Holocene thickness (high Pleistocene elevations) and, thus, appear to have always had a low 

deposition potential.  
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Natural Sediments (Holocene and Pleistocene) 

The Holocene surface (Figure 8) is clearly related to the underlying Pleistocene 

formation and/or shoreline orientation.  Where Gulfport sands are resident (headlands) the 

Holocene surface dips moderately towards the southeast.  In areas underlain by the Prairie 

Formation, the Holocene surface dips toward the embayment axis and in the embayment the 

surface dips steeply toward the southeast.  The result is a broad, gently dipping platform in the 

headland areas and a thin, steeply dipping platform in the embayment.  This suggests that the 

Holocene sediments are largely reworked from the underlying Gulfport sands and have not 

shown much longshore movement and/or were preferentially deposited in the headland areas.  

In the likely case that the broad Holocene platform is a product of reworked Gulfport sands, it 

would suggest that there is minimal longshore drift – with more of an offshore-onshore 

transport component.  It is also possible that once the broad platform was established the 

energy regime associated with the headland was such that deposition was enhanced (Carter et 

al., 1990).   

 
Figure 8.  Holocene surface contours; control points are shown on Figure 3. 

There appears to be a good correlation between thick Holocene deposits and the 

underlying Pleistocene units.  Holocene thicknesses in locations underlain by Pleistocene 

Gulfport sands are greater than where Prairie mud and clays are resident (Figures 7 and 9).  

This relationship is partly attributed to the fact that the Gulfport Formation surface elevations 

tend to be lower than the Prairie Formation (Otvos, 1992).  In the nearshore, the Pleistocene 

surface topography follows this trend, such that the elevation of the Prairie surface tends to be 

higher than the adjacent Gulfport.  This suggests that the two units eroded equally during 

initial flooding (Figure 9).  Lack of detailed onshore stratigraphic control limits the 
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interpretation of the shoreline configuration, particularly for determining whether the 

headlands are a result of slightly elevated Gulfport ridges running semi-perpendicular to the 

present shore, a result of antecedent fluvial/alluvial processes, or both.  This is an important 

question, as the headlands appear to control the overall Holocene sedimentation patterns 

(Oivanki, 1994a), including the fate of recent fill sediment.  Given the data, one can only 

make the generalization that areas associated with the Prairie represent the embayment while 

those areas associated with the Gulfport represent headlands.    

 
Figure 9.  Pleistocene units and surface elevation (m) based on cores taken in study area. 

Conclusion  

To achieve the intended goals of quantifying and describing nearshore sediment 

movement and deposition following repeated renourishment and associated nearshore mining, 

a combination of survey and geological data was used.  Profile data provided recent changes 

associated with the latest renourishment; core data, although limited in resolution, helped 

document long-term sedimentation.  Taken in tandem the two partial datasets provide a 

lengthy record of sedimentation including renourishment and natural Holocene deposition.  

The use of profile data along with core data taken offshore of a renourished beach represents a 

practical approach to a difficult situation in this study area.   Use of this technique highlights 

the wide-ranging utility of monitoring activities prior to and following renourishment.   

1) In the study area, recent renourished sediments were predominantly transported off the 

subaerial beach and deposited on the nearshore.  Volume estimates further imply that the 

beach is nearly a closed system.  
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2) Combining data sources using a basic set of rules and an ‘if then’ logic helped resolve the 

long-term fill-Holocene contact.  Subsequent volume calculations are in line with the 

theoretical value from the two largest renourishment projects.    

3) The location of the borrow site was in an area of high Holocene deposition and coincides 

with a sandy Pleistocene formation.  A similar area exists at the southwest end of the 

study site.  Following excavation, however, the area immediately adjacent to the borrow 

location appeared to be adversely affected by the resulting ‘hole’ in the nearshore 

platform. 

4) The Pleistocene units control Holocene thicknesses and fill thicknesses.  Muddy 

Pleistocene units (Prairie Formation) are topographically higher than sandy units 

(Gulfport Formation), and have limited Holocene thickness.  Areas with low Holocene 

thicknesses are also associated with low fill thicknesses, possibly as a result of lower 

accommodation space.  

5) The existence of the two headlands and the presence of the Gulfport units is likely an 

important component in the development of a wide nearshore platform.  Continued 

progradation of the nearshore platform should increasingly buffer erosion at the shoreline, 

and should also reduce future renourishment costs.    
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